eXtreme Minimal Kernel

A free Real Time operating system for microcontrollers

[image: image1.png]

Shift-Right Technologies, LLC.

www.shift-right.com
January 14, 2004
John Taylor

jtaylor@shift-right.com

Contents
31
Introduction

31.1
What is XMK?

31.2
What XMK is not?

32
Overview

53
Getting Started with the XMK Package

53.1
Booting your target board

53.2
Configuring XMK

83.3
Run time

104
Getting Started with the APL Package

104.1
Booting your target board

124.2
Configuring APL

124.2.1
Platform Configuration

124.2.2
Application Configuration

135
XMK Package in detail

135.1
Philosophy

145.2
Threads

145.2.1
Terminating Dynamic Threads

145.3
Thread Scheduling

145.3.1
Thread Handles and Thread Priorities

155.4
Interrupts

165.4.1
Stack Memory

165.4.2
Nesting vs. Levels

175.5
Thread Synchronization

175.6
Mutual Exclusion

185.7
Priority Inversion

185.8
Error Handling

185.9
Porting

196
APL Package in detail

196.1
Philosophy

196.2
OS Abstraction Layer

196.2.1
Factories

196.3
Hardware Abstraction Layer

206.4
Porting

217
Appendix -- Directory Structure

1 Introduction

The eXtreme Minimal Kernel (XMK) is a preemptive multitasking operating system for microcontrollers. XMK was designed from the ground up to be very small with respect to ROM, RAM and CPU processing resources. The first targeted platforms were 8bit microcontrollers with only 4K to 8K of ROM and 512 bytes of RAM. XMK has since been scaled up to 16bit and 32bit platforms. Originally it was only a preemptive scheduler with thread synchronization primitives. Now it includes such features as mailboxes, memory pools, file descriptors, hardware device drivers, and even a minimal TCP/IP stack. Even as XMK has expanded its functionality and scope, it has maintained its extreme minimal philosophy and footprint. Its minimum configuration
 is still less than 340 bytes of ROM and 18 bytes of RAM.

1.1 What is XMK?

· Small. XMK was specifically designed to run on microcontrollers using on the only onboard ROM and RAM.

· Configurable. The application only includes the kernel services that are needed.

· Scalable. XMK will run on virtually any platform, 8bit, 16bit, and 32bit processors.

· Portable. XMK is written in C with only a small amount of target specific assembler for speed and efficiency.

· Free. The source can be used freely for commercial and proprietary applications (BSD licensing agreement).

1.2 What XMK is not?

· NOT a Board Support Package (BSP). The burden of defining the vector table, C start-up code, booting the board, initializing/configuring RAM, etc. falls on the developer and/or the target's development system.

· NOT a Debug/Run-time environment. Targets must be loaded and debugged with the tools supplied by their respective development system.

· NOT a C/C++ Run-time Library replacement. If the C/C++ Run time libraries are needed, they must be provided by the target's development system.

2 Overview

The XMK operating system is divided into two packages. The first package, XMK
, includes only the core scheduler and kernel interfaces. This package provides the preemptive scheduler, threads, and thread synchronization primitives. The second package, APL
, is a kernel and platform independent library that provides interfaces such as inter-thread communications, heaps, memory pools, file descriptors, etc. Figure 1 shows the relationship between the XMK and APL packages.

Figure 1 - APL/XMK Layering

[image: image2.png]XMK

You will notice a thin orange section that is not labeled. This orange section is the Operating System Abstraction Layer defined by the APL package. The OS Abstraction layer is what provides APL with its kernel independence. Since APL was original created to support XMK, the implementation of the OS Abstraction layer is simply a mapping of APL names to XMK names. The mapping does not add any code or run time overhead. While, APL was designed with XMK in mind, it supports other Kernels/RTOSs. For instance, both Windows and Linux/POSIX are supported as user applications. This allows applications written to use the APL interfaces to be transparently ported to other operating systems and platforms, thus facilitating the development of applications on a PC workstation before moving to an embedded target. A good example of this is the multi-threaded embedded web server
 application. The web server runs under Linux or on an embedded target board without any modification to the application itself. The executable images require different operating system code and low-level device drivers for each platform, but the application code itself is not modified or require #ifdef statements. Figure 2 shows the APL layering independent of a specific OS.

Figure 2 - Formal APL Layering

[image: image3.png]\ 0S Abstraction Layer
| Kemnel/RTOS

It is important to note that both packages can be used independently from each other. The XMK package has no dependencies on the APL package. If you just need a micro-sized preemptive scheduler and nothing else, then forget about APL and just use the XMK package. Also, if you have any existing application that is written for APL/XMK and you want to move to another RTOS, then keep the APL package, and replace XMK with your new RTOS. You only need to implement the OS Abstraction layer for the new RTOS.

Note on terminology: XMK is a generic term used to describe the entire XMK operation system, including both the XMK and APL packages. The term XMK is also used for referencing just the XMK package and/or scheduler. This is an unfortunate side effect of XMK’s evolution from a simple scheduler to a full featured RTOS.
3 Getting Started with the XMK Package
XMK is a static operating system, in that it is statically linked with the application at compile time. A single executable image is then downloaded to the target. In addition, XMK assumes a single memory space that is shared by the kernel and the application. Caution: a way-ward application can corrupt kernel memory and crash the system.

3.1 Booting your target board

Getting your board up and running is your responsibility (i.e. the developer). XMK does not provide any assistance with this stage of the development cycle
. Before attempting your first XMK application you will need to create a sample application that does the following:

· Creates and populates the vector table with the RESET vector and a Timer interrupt. The timer interrupt will be eventually be used as the system tick for XMK.

· On reset, the boot code configures all of the necessary MCU registers, BUS controller(s), external RAM, peripherals, etc. that are needed for minimum operation of the target board.

· Runs the C start-up code that is responsible for initializing the DATA and BSS segments. This is very important since XMK assumes that all variables in the BSS segment are initialized to zero on boot-up.

· Verify the timing of your timer interrupt. Typically this is done by flashing a LED based on your timer interrupt and then measuring the duty-cycle with oscilloscope.

The complexity of the sample application depends on your particular target and your compiler. Which compiler you use dedicates how you build your vector table, linker scripts, etc.

3.2 Configuring XMK

All the major kernel services in XMK are configurable so that the application only includes what it needs and no more. The configuration XMK is a two-step process. The first step is done via a global header file: xmkcfg.h. The following code listing is for the semaphore-with-timeouts test application running on Atmel’s STK501 eval board with an ATmega128 microprocessor.

Listing 1 - Example xmkcfg.h

	#ifndef _xmkcfg_h_

#define _xmkcfg_h_

/*--------------------- STEP 1: ALLOCATE KERNEL RESOURCES -------------------*/

/* Number of threads */

#define PRJ_XMK_NTHREADS

7

/* Size of Thread Names (without the null terminator) */

#define PRJ_XMK_MAX_THREAD_NAME_LENGTH
9

/* Define number of unique priorities */

#define PRJ_XMK_MAX_PRIORITY_LEVELS
6

/*--------------------- STEP 2: KERNEL CONFIG -------------------------------*/

/** Enable which kernel services to be used */

#define USE_XMK_SEMAPHORES_WITH_TIMEOUT

#define USE_XMK_SCHPRI_SCHEDULER

#define USE_XMK_THREAD_XSLEEP

#define USE_XMK_SYSTEM_TIMER

#define USE_XMK_SCHEDULER_EI_DI_SWITCHING

#define USE_XMK_EXTENDED_THREADS

#define USE_XMK_CORE_KERNEL

/* Resolves inter-dependencies based on the above services */

#include "xmk/config/resolve.h"

/*--------------------- STEP 3: KERNEL PLATFORM CONFIG ----------------------*/

/* Use XMK's default platform configuration */

#include "xmk/config/atmel/pal-avr-gcc.h"

/*--------------------- STEP 4: TARGET SPECIFIC SUPPORT ---------------------*/

/******** Using the THREAD SLEEP - provide target/board support *********/

/** Number of sleep ticks per second */

#define PRJ_XMK_NUM_SLEEPTICKS_PER_SECOND 224

/******** Using the SYSTEM TIMER - provide target/board support *********/

/** Number of system ticks per second */

#define PRJ_XMK_NUM_SYSTICKS_PER_SECOND 224

#endif
/* end _xmkcfg_h_ */

There are four steps involved in the configuration. The content of each step is straight forward and is dictated by the required services, processor platform, and target board. There are two rules for creating your xmkcfg.h header file.

· Do the steps in the order listed in the example.

· Always include “xmk/config/resovle.h” after selecting the kernel service in step 2.
The second step in configuring XMK is to compile and link the services selected in the xmkcfg.h header file. It is important build only the source directories that corresponded to the compile switches defined in xmkcfg.h. This is due to the fact that several kernel services have different implementations based on the configuration desired. XMK provides a mapping of source directories to kernel services. There is two sets of mapping, one for platform independent kernel services, and the second is for platform specific kernel support. The current mapping for platform independent services can always be found in file src/xmk/config/services.b. The current mapping for platform specific support can be found in the files: src/xmk/config/<mcu-vendor>/pal-<mcu>-<compiler>.b. Where mcu-vendor, mcu, and compiler define your specific target platform. Examples of both mappings are listed below.
Listing 2 – Example Platform Independent Source Directories

	##

This file contains the list of directories that need to be compiled

and linked for the NON-PLATFORM specific services for XMK

USE_XMK_CORE_KERNEL

src/xmk/kernel

src/xmk/kernel/sched # When NOT using USE_XMK_SCHPRI_SCHEDULER

src/xmk/kernel/schpri # When using USE_XMK_SCHPRI_SCHEDULER

src/xmk/kernel/timeout # When using USE_XMK_WAIT_WITH_TIMEOUT

USE_XMK_THREAD_SLEEP

src/xmk/sleep

src/xmk/sleep/timeout # When using USE_XMK_SEMAPHORES_WITH_TIMEOUT

USE_XMK_THREAD_XSLEEP

src/xmk/sleep/xsleep

src/xmk/sleep/xsleep/dlist # When using USE_XMK_SEMAPHORES_WITH_TIMEOUT

src/xmk/sleep/timeout # When using USE_XMK_SEMAPHORES_WITH_TIMEOUT

USE_XMK_SYSTEM_TIMER

src/xmk/tmsys

USE_XMK_SCHEDULER_EI_DI_SWITCHING

src/xmk/sch_eidi

USE_XMK_TSD

src/xmk/tsd

USE_XMK_SEMAPHORES

src/xmk/sema

USE_XMK_SEMAPHORES_WITH_TIMEOUT

src/xmk/sema

src/xmk/sema/dlist

src/xmk/sema/timeout

USE_XMK_MUTEXES (currently implemented as aliases to semaphores)

src/xmk/sema # When no sempahore option is specified

USE_XMK_SYNCHRONOUS_WAIT

src/xmk/kernel/sync

USE_XMK_EXTENDED_THREADS

src/xmk/xthread

src/xmk/xthread/sched # When NOT using USE_XMK_SCHPRI_SCHEDULER

src/xmk/xthread/schpri # When using USE_XMK_SCHPRI_SCHEDULER

Listing 3 – Example Platform Specific (H8sa/GCC) Source Directories

	##

This file contains the list of directories that need to be compiled

and linked for XMK for the H8sa/GCC platform.

#

See header file: src/xmk/config/hitachi/pal-h8sa-gcc.h

for the exact target CPU(s) supported.

USE_XMK_SYSTEM_TIMER - with NON-nested interrupts

src/xmk/platform/hitachi/h8sa/tmsys/gcc/isr

USE_XMK_SYSTEM_TIMER - with NESTED interrupts

src/xmk/platform/hitachi/h8sa/tmsys/gcc/isrnested

USE_XMK_EXTENDED_THREADS

src/xmk/platform/hitachi/h8sa/xthread

USE_XMK_CORE_KERNEL: USING INTERRUPT CONTROL MODE 0

src/xmk/platform/hitachi/h8sa/kernel/gcc

src/xmk/platform/hitachi/h8sa/kernel/icmode0

src/xmk/platform/hitachi/h8sa/kernel/gcc/icmode0

USE_XMK_CORE_KERNEL: USING INTERRUPT CONTROL MODE 2

src/xmk/platform/hitachi/h8sa/kernel/gcc

src/xmk/platform/hitachi/h8sa/kernel/icmode2

src/xmk/platform/hitachi/h8sa/kernel/gcc/icmode2

3.3 Run time

As stated above, the developer is responsible for providing the initial boot-up and target initialization code. The kernel can be only started after:

1. The C start-up routines have be run.

2. Xmk_initiailize() has been called.

3. And at least one static thread has been created using Xmk_createThread().

Important: the application must leave interrupts disabled during the entire start-up sequence. The kernel will enable interrupts as part of its start sequence when Xmk_start() is called.
The code listings below provide a trivial but complete example for creating a multi-threaded application. The example code is for Atmel’s STK501 eval board with an ATmega128 microprocessor.

Listing 4 - Example Application - main.c

	#include "xmk/kernel.h"

#include "xmk/tmsys.h"

#include <avr/io.h>

/* Allocate memory for the stacks */

static XMK_BYTE _memStackIsrs[XMK_ISR_KERNEL_OVERHEAD+4];

static XMK_BYTE _memStackApple[XMK_ADDER_STACK_APP_THREAD+16];

static XMK_BYTE _memStackOrange[XMK_ADDER_STACK_APP_THREAD+16];

/* Thread Priority and/or Handles */

#define THREAD_ORANGE 0

#define THREAD_APPLE 1

/* This function is called from XMK's system timer's interrupt */

void myAppSystemTickISRHook(void) {

 static XMK_U16 counter1 = 0;

 /* Wake-up the APPLE thread every 1/4 sec (2Hz flash rate) */

 if (++counter1 > XMK_NUM_SYSTICKS_PER_SECOND/4) {

 Xmk_isr_signal(THREAD_APPLE);

 counter1 = 0;

 }

 }

/* Entry Point for my thread */

void mainApple(void* notUsedInThisExample) {

 XMK_BYTE counter = 1;

 /* FOREVER loop (do not let the thread end) */

 for(;;) {

 /* Wait for the timer interrupt to signal me. */

 Xmk_wait();

 /* Toggle LED1 */

 outb(PORTB, inb(PORTB)^0x01);

 /* Generate a signal to the ORANGE thread at half my Flash rate */

 if ((++counter&0x01)) {

 Xmk_signal(THREAD_ORANGE);

 }

 }

 }

/* Entry Point for my thread */

void mainOrange(void* notUsedInThisExample) {

 /* FOREVER loop (do not let the thread end) */

 for(;;) {

 /* Wait for the APPLE thread to signal me. */

 Xmk_wait();

 /* Toggle LED2 */

 outb(PORTB, inb(PORTB)^0x02);

 }

 }

/* NOTE: Main is only after the C start-up code has been run. Also,

 at this point interrupts are still disabled.

*/

int main(void) {

 /* Setup up the System Tick Timer and output pins for controlling the LEDS */

 outb(TIMSK,(1<<TOIE0)); /* enable TCNT0 overflow */

 outb(TCNT0,0); /* reset TCNT0 */

 outb(TCCR0,4); /* count with cpu clock/64. For 3.69Mhz -->225.21Hz */

 outb(DDRB,0xFF); /* use all pins on PortB for output */

 outb(PORTB,0xFF); /* Start with LEDs off (inverted output) */

 /* Initialize the Kernel */

 Xmk_initialize();

 /* Create static threads (at least one) */

 Xmk_createThread(THREAD_APPLE,

 mainApple,

 0,

 XMK_TOP_OF_STACK(_memStackApple,sizeof(_memStackApple)),

 XMK_THREADSTATE_READY);

 Xmk_createThread(THREAD_ORANGE,

 mainOrange,

 0,

 XMK_TOP_OF_STACK(_memStackOrange,sizeof(_memStackOrange)),

 XMK_THREADSTATE_READY);

 /* Start the kernel (note: this method never returns) */

 Xmk_start(XMK_TOP_OF_STACK(_memStackIsrs,sizeof(_memStackIsrs)));

 /* I never get here, but the compiler wants a return value */

 return 0;

 }

Listing 5 - Example Application - xmkcfg.h
	#ifndef _xmkcfg_h_

#define _xmkcfg_h_

/*--------------------- STEP 1: ALLOCATE KERNEL RESOURCES -------------------*/

/* Number of threads */

#define PRJ_XMK_NTHREADS
 2
/*--------------------- STEP 2: KERNEL CONFIG -------------------------------*/

/** Enable which kernel services to be used */

#define USE_XMK_CORE_KERNEL

#define USE_XMK_SYSTEM_TIMER

/* Resolves inter-dependencies based on the above services */

#include "xmk/config/resolve.h"

/*--------------------- STEP 3: KERNEL PLATFORM CONFIG ----------------------*/

/* Use XMK's default platform configuration */

#include "xmk/config/atmel/pal-avr-gcc.h"

/*--------------------- STEP 4: TARGET SPECIFIC SUPPORT ---------------------*/

/******** Using the SYSTEM TIMER - provide target/board support *********/

/** Number of system ticks per second */

#define PRJ_XMK_NUM_SYSTICKS_PER_SECOND 224

/** Hook in my application's ISR routine into XMK's system timer ISR */

void myAppSystemTickISRHook(void);

#define XMK__APP_SYSTEM_TIMER_HOOK_FUNC() myAppSystemTickISRHook()

/*--*/

#endif
/* end _xmkcfg_h_ */

4 Getting Started with the APL Package
Another Platform independent Library package provides more sophisticated and abstract interfaces than the core XMK scheduler and synchronization primitives. The reason for this two layer approach is to allow the APL code to be reused on non-XMK platforms. APL itself is divided into two sections, basic and multi-threaded. The interfaces and source code in the basic section assume a single threaded model and have few or no dependencies on the actual target platform. The basic section has no dependencies on the multi-threaded section. The multi-threaded section contains interfaces that aid in multi-threaded programming and/or require the existence of a multithreaded scheduler. The multi-threaded section is dependent on the basic section.
Note on terminology: The term APL is used to describe the entire APL package. It is also sometimes use to describe just the basic section of APL. The term APLMT refers specifically to the multi-threaded section of APL.

4.1 Booting your target board

The APL package is initialized separately from the XMK package. In addition, the APL Basic section is initialized separately from the APL Multi-Threaded section. The order of initialization is based on who is dependent on whom. For example, the APL Multi-Thread section is dependent on the APL Basic section and the platform’s kernel; it can not be initialized till both the APL Basic section and the Kernel have been initialized. The following pseudo code demonstrates two possible and valid start-up sequences.
Listing 6 - APL Startup Seqeuence#1

	RESET_VECTOR(void)

 {

 <Initialize the Stack Pointer>

 <Initialize Registers and Bus controller>

 <Run the C/C++ start-up code>

 /* Initialize the APL Basic section */

 Apl_systemInit();

 <Do more target specific initialization>

 /* Initialize XMK */

 Xmk_initialize();

 /* Create my root thread */

 Xmk_createThread(..., entryRootThread, ...);

 /* Start XMK */

 Xmk_start(...);

 }

void entryRootThread(void* args)

 {

 /* Initialize APL Multi-threaded section */

 Aplmt_systemInit();

 <my app code here>

 }

Listing 7 - APL Startup Seqeuence#2

	RESET_VECTOR(void)

 {

 <Initialize the Stack Pointer>

 <Initialize Registers and Bus controller>

 <Run the C/C++ start-up code>

 <Do more target specific initialization>

 /* Initialize XMK */

 Xmk_initialize();

 /* Create my root thread */

 Xmk_createThread(..., entryRootThread, ...);

 /* Start XMK */

 Xmk_start(...);

 }

void entryRootThread(void* args)

 {

 /* Initialize APL */

 Apl_systemInit();

 Aplmt_systemInit();

 <my app code here>

 }

4.2 Configuring APL

Numerous APL interfaces require configuration and/or setup information at compile time. This configuration information is divided into two categories. One is platform configuration. Platform configuration is information that is dedicated by your target platform. For example, the APL data type AplSize_t needs to large enough to contain an offset that can reference the entire memory space of the processor. On a MCU that is limited to 64K of total memory, then AplSize_t is defined as 16bits. On other platforms, AplSize_t is defined as 32 bits. The second category is application configuration. This allows individual applications to customize the behavior, resources of the interfaces at compile time.
4.2.1 Platform Configuration

The platform configuration is done via header files. Any interface that requires platform information always includes a platform header file. For example: The header file for the types interface contains the statement: “#include “platform/types.h”. It is then the responsibility of the application’s build script to set the header include path correctly so that the appropriate ./platform directory is included. Note: not all platform header files need to be in the same ./platform directory. There can be many ./platform directories as long as there is one and only platform header file per interface. The following example is from the aplmt-itc-large test project running as a POSIX user application.
	Needed Platform Header files

	./src/aplmt/devtests/platmappings/generic-os/platform/

	
xslogapi.h

	./src/aplmt/platmappings/posix/userapp/platform/

errapi.h

types.h

kernelapi.h

mutexapi.h

privateapi.h

semaapi.h

sysapi.h

	

	Include Path (gcc/gnu-make example)

	APLINCPATH =-I$(srcroot)/src/aplmt/platmappings/posix/userapp \

 -I$(srcroot)/src/aplmt/devtests/platmappings/generic-os

4.2.2 Application Configuration

The application configuration is done via preprocessor compile switches and defined values contained in a single header file: aplcfg.h. The application is responsible for the contents of this file. Typically the aplcfg.h file resided in the project’s root source directory, but it can be located anywhere. The follow is an example APL config file.
Listing 8 - Example APLCFG.H

	#ifndef _aplcfg_h_

#define _aplcfg_h_

/** THIN ALLOCATOR */

#define USE_APL_MEMTHIN_FATAL_ERROR_WHEN_OUTOFMEMORY

#define OPTION_APL_MEMTHIN_SIZE_HEAP 128

#define OPTION_APL_MEMTHIN_ALIGNMENT_SIZE 4
/** MEMORY POOL */

#define OPTION_APL_MEMPOOL_ALIGNMENT_SIZE 4
/** ITC Model */

#define USE_APLMT_ITC_MODEL_NORMAL

#define USE_APLMT_IMBOX_WITH_TIMEOUT

#define USE_APLMT_ITC_INCLUDE_ERROR_CHECKING

#define USE_APLMT_INIT_IMSG_IN_SYSTEM_INIT

#define USE_APLMT_INIT_IMBOX_IN_SYSTEM_INIT

/** Number/type of messages */

#define OPTION_APLMT_IMSG_MAX_MESSAGES 6

#define OPTION_APLMT_IMSG_MAX_MESSAGES_WITH_DATA 2

/** Override default allocation for request/response messages */

#define OPTION_APLMT_IMSG_BEGIN_REQUEST_MESSAGES 0

#define OPTION_APLMT_IMSG_END_REQUEST_MESSAGES 0

/** Set message payload type */

#define AplmtImsgData AplWord

/** Number of mailboxes */

#define OPTION_APLMT_IMBOX_MAX_MAILBOXES 3

/** The following ONLY applies when using APL's serial port drivers
 are used for Logging */

/* DEVICE: UART-A */

#define USE_APLMT_DEVICE_UARTA_TX

#endif
/* end _aplcfg_h_ */

Note: In general, do not include other header files in aplcfg.h. Almost all of the APL header files are directly/indirectly dependent on the aplcfg.h header file. Any header file(s) that aplcfg.h is dependent on, so then are the APL header files.

5 XMK Package in detail

5.1 Philosophy

The first design requirement is extreme minimal footprint. All new features and/or interfaces added to the kernel are implemented such that they do not increase the ROM and RAM usage of the fundamental kernel. The goal is that the application does not incur any overhead for services/features it does not use. On the negative side, the extreme minimal design goal is responsible for the complexity
 of the kernel internals.
5.2 Threads

XMK provides two types of threads, static and dynamic. Static threads are threads created before the kernel is started and are never terminated
. Dynamic threads are threads created only after the kernel is running and they can be terminated. Static and dynamic threads can be used together in the same application. By default, only static threads are allowed. Dynamic threads are enabled with the configuration switch: USE_XMK_EXTENDED_THREADS.
5.2.1 Terminating Dynamic Threads

XMK does not provide any method to forcibly terminate or a kill a dynamic thread. A thread is only deleted and/or terminated with its start() function returns. This is intentional! Deleting threads has always been problematic from an application design point of view, because of the resources that need to be released by the dying thread. If a thread is externally killed, then there is no way to ensure that any resources (memory, semaphores, etc.) it has acquired will be released on its demise. Threads that voluntarily terminated themselves can ensure
 that proper clean-up is done before ending.
5.3 Thread Scheduling

There are three basic approaches to thread scheduling: cooperative, preemptive, and round-robin. Cooperative scheduling requires that individual threads 'play-nice' and periodically yield control of the CPU to other threads. Preemptive scheduling forces a thread/context switch whenever there is ready-to-run thread that has higher priority than the currently running thread. Preemptive scheduling requires that all threads be assigned a priority. Round-Robin scheduling is where control of the CPU is time-multiplexed across N threads. For example, each thread is allowed up to 10msec of run time before the kernel forces a thread/context switch to the next ready-to-run thread. Round-robin scheduling and preemptive scheduling are often combined together. XMK currently only supports preemptive scheduling, although there are plans to support round-robin scheduling in the future.
5.3.1 Thread Handles and Thread Priorities

The XMK scheduler requires each thread to have a thread handle (a.k.a. thread identifier) and a scheduling priority. Conceptually thread handles and thread priorities are completely independent of each other. However, to simplify the kernel and to reduce the kernel's footprint, XMK by default combines the two. When using the default scheduler, a thread's priority is also the thread's handle and can be used interchangeably. An alternate scheduler is available that decouples a thread's handle from the thread's priority (switch: USE_XMK_SCHPRI_SCHEDULER). The alternate scheduler, known as the Priority Scheduler, is more flexible, but costs more in terms of RAM and ROM. The following table lists the different features of each scheduler.

	Default Scheduler
	Priority Scheduler

	Unique Priorities. No two threads can have the same priority.
	No Priority Restrictions. Multiple threads can have the same priority.

	New Threads requires New Priorities. Adding new threads to your application requires adjustments to the application's existing priority scheme.
	Selectable Priority Levels. The application is required to define at compile time the total number of different/unique priorities that can be used by the application

	Easier Memory Management. Managing the stack memory for dynamic threads is greatly simplified
	Undetermined Execution Order. There is no guarantied execution order when there are N ready-to-run threads of the same priority.

	No self context switches. The scheduler will never perform a context switch such that the current and next threads are the same.
	No self context switches. The scheduler will never perform a context switch such that the current and next threads are the same.

	Fast context switches on wake-up. When a higher priority thread than the currently running thread is signaled/woken-up, the context switch occurs immediately. The context switch time is completely independent of the number of threads
	Fast context switches on wake-up. When a higher priority thread than the currently running thread is signaled/woken-up, the context switch occurs immediately. The context switch time is completely independent of the number of priority levels and threads.

	Not an O(1) scheduler. When a thread voluntary yields the CPU (i.e. makes a blocking call) the amount of time required to find the next ready-to-run thread is dependent on the number of application threads.
	O(1) scheduler. . When a thread voluntary yields the CPU (i.e. makes a blocking call) the amount of time required to find the next ready-to-run thread is dependent only on the number of priority levels. Since the number of priority levels is fixed at compile time and is independent of the total number of threads, the scheduling time does not change as the number of threads increases or decreases.

	Increasing interrupt latencies. Interrupts latencies increase as the number of threads increase.
	Constant interrupt latencies. Interrupts latencies do not increase as the number of threads increase.

	Can be Deterministic. The worst case interrupt and switching latencies can be calculated prior to run time, when using only static threads.
	Deterministic. The worst case interrupt and switching latencies can be calculated prior to run time, since all of the variables that effect the scheduling times are fixed at compile time.

	Small number of threads. The default scheduler was intented for a small number of threads (<8). Note: The default scheduler has no thread limit; it is strictly a performance issue.
	Large number of threads. Designed to support as many threads as there is available RAM.

Note: It is recommended that the application treat thread handles and thread priorities as independent entities even when using the default scheduler. This approach makes the application independent of which XMK scheduler is used and facilitates being able to change schedulers as the needs of the application change over time.

5.4 Interrupts

XMK requires a hook for all interrupt vectors where the corresponding interrupt service routine can cause a thread context change. If the application has an interrupt that is never associated with a potential context change, then XMK does not need to be aware of the interrupt. XMK hooks into an interrupt vector, by providing the raw interrupt-service routine to allow interaction with the kernel. The XMK ISR stubs in turn calls the application's interrupt-service-routines. The XMK ISR stubs are responsible for the mechanics of saving, switching, and restoring thread contexts on entry and exit from interrupts. When the building the vector table, the entries need to reference the XMK ISR stubs, not the applications interrupt service routines.
Since ISRs are very target specific, the application must create the actual XMK ISR stubs. XMK makes this step easier by providing template source files for creating both non-nested and nested XMK ISR stubs. These templates files can be found under the src/xmk/platform directory tree.

5.4.1 Stack Memory

A single stack is used for all interrupt processing. This interrupt stack is separate from all of the individual thread stacks. This approach provides significant RAM savings, especially as the number of threads increases. However, this means that all interrupt processing must be handled by XMK so the interrupt stack can be swapped in and out appropriately. Note: The requirement of all interrupt processing be handled by XMK is not an absolute requirement. The application can choose to bypass XMK's interrupt handlers if it meets the following conditions:

· The application's custom ISRs make no XMK calls.

· The application provides sufficient stack space for all application stacks to handle the stack usage of the application's custom ISR routine(s).

5.4.2 Nesting vs. Levels

There are two issues with respect to interrupts: The first issue is multiplexing and/or nesting interrupts. Nesting interrupts occurs when during the executing of an interrupt service routine, interrupts are enabled. This allows higher priority interrupts to run while deferring the completion of the original interrupt. The second issue is multiple priority levels with respect to enabling/disabling interrupts. Some processors instead of having a single bit for the global interrupt mask, have multiple bits than can be used to selective disable/enable interrupts based their assigned priority levels. XMK supports non-nested interrupts, nested interrupts, but not multiple priority interrupt masks
. By default, XMK is configured only for non-nested interrupts. Support for nested interrupts is enabled by the configuration switch: USE_XMK_NESTED_INTERRUPTS.
5.5 Thread Synchronization

XMK currently supports two thread synchronization primitives, counting semaphores and thread semaphores. It is assumed that the reader is familiar with counting and binary semaphores. Thread semaphores are a specialized form of a binary semaphore. Listed below are the features of a thread semaphore.
· The same basic wait() and signal() methods of a binary semaphore.

· One and only one thread can wait on the thread semaphore.

· Thread Semaphores are bound to individual threads. Only the thread that the semaphore is bound-to can call the wait() method. However, there are no such restrictions on the signal() method.

· Every thread has one Thread Semaphore.

· Thread semaphores can not be used for mutual exclusion.
Note: XMK provides signal() methods for both counting and thread semaphores that can be called from the context of an interrupt service routine.

5.6 Mutual Exclusion

Concurrently executing threads often share data structures. To protect shared data structures from race conditions and/or corruption, individual thread access to the data should be mutually exclusive. The following primitives can be used to implement mutual exclusion:

· Semaphores as defined by Dijkstra.

· Mutexes.

· Temporarily disable/enable concurrence.
Listed below are the mutual exclusion (MX) primitives provided by XMK.

· Disable/Enable Interrupts. Disabling interrupts for a short period of time will provide the application with a MX region that protects data shared across threads as well as interrupt service routines. However, this approach is bit drastic and can have undesired effects on interrupt latencies and/or real-time performance.

· Disable/Enable Context Switching. Disabling thread switching for a short period of time will provide the application with a MX region that protects data shared across threads only. While this approach is less drastic the disabling/enabling interrupts, it still impacts the performance of the application by increasing context-switch latencies.

· Counting Semaphores.
· Mutexes. Currently the Mutex API is implemented as aliases to the Semaphore API.

5.7 Priority Inversion

The following is a definition from www.usefulcontent.org:

	Priority inversion is a phenomenon which can arise in a concurrent programming environment where a high priority task (H) is blocked by a low priority task (L), e.g. because L has locked some resource needed by H, and L then has to wait for a medium priority task (M). The net result is that H ends up waiting for M instead of the other way round - the priorities become inverted.
This can be a problem if, for example, M takes a long time, causing H to miss a deadline.
A possible cure is to have tasks inherit the maximum priority of any task that is waiting for them. In that case L temporarily becomes high priority until H can procede, thus preventing M from running in place of H.

XMK does not currently provide any mechanisms for preventing priority inversion.
5.8 Error Handling

Rudimentary error handling support is provided, but it is limited to the reporting of fatal errors. XMK places the burden of handling fatal errors on the application. This done for the obvious reason that only the application has the knowledge of what to do when a fatal error is encounter. XMK defines the method Xmk_fatalError() that is the responsibility of the application to implement. The semantics of this method are such that the application can use it report fatal errors it encounters, not just the kernel. See the header file src/xmk/thread.h for more details.
5.9 Porting

Porting XMK to a new platform is a straight forward process. However, it does require the porter to be thoroughly familiar with the platform’s interrupt processing model and the compiler’s ABI for the platform (i.e. stack frame layout, volatile registers, etc.). Note: A given port of XMK is dependent not only the target MCU but what compiler is used. A single MCU may have multiple ports. Listed below is a brief outline of what is required when porting XMK. More details can be found in the src/xmk/docs directory.
· Provide functions for enabling, disabling, and querying the processor’s global interrupt state. Typically, these map to compiler intrinsic functions.

· Provide methods that perform the actual context switches. Typically these are implemented in assembler.

· Generate template files for the XMK interrupt service routine stubs. Typically these are done in assembler.

· Perform a stack usage analysis on the platform specific code. The stack usage is need so XMK can provide the application developer with minimum stack sizes.

6 APL Package in detail

6.1 Philosophy

APL has two primary design requirements, platform independence and minimal
 resource usage. The first, platform independence, is an absolute requirement. The second, minimal resource usage, can be compromised when the two design requirements conflict.
6.2 OS Abstraction Layer

The OS Abstraction layer is defined in the multi-threaded section the APL package. The OS Abstraction Layer is collection of header files that define basic scheduling and kernel methods. Other APLMT interfaces in turn, depend on the OS Abstraction Layer header files, not any concrete implementation. It is at link time that the binding between the application code and the platform’s RTOS is made. The only platform/RTOS specific code in the APL package is the different implementations of the OS Abstraction Layer.
The OS Abstraction Layer contains all of the functionality as the core XMK package, but presents it in slightly different manner. Details of the OS Abstraction Layer interfaces can be found in the src/aplmt/os directory.
6.2.1 Factories

A major issue when designing platform independent interfaces is how to create resource instances, i.e. how to create threads, semaphores, mutexes, etc. To create a resource you need to know its how much RAM it needs. Well, different platforms have different RAM requirements. APL uses the factory pattern
 to solve this problem. Factories allow the application to use a fixed interface for creating a resource while the platform specific details are “hidden” inside the factory. The factories themselves are platform specific and must be instantiated by the application. Typically factories are instantiated very earlier in the start-up process so as to localize and/or isolate the platform specific code. The actual implementation of the factories is part of the OS Abstraction Layer implementation.
6.3 Hardware Abstraction Layer

Platform independence involves more than just Kernel/RTOS independence that is provided by the OS Abstraction Layer. Accessing special function registers, on board peripherals, external devices, etc. is very platform specific. APL uses the concept of a Hardware Abstraction Layer, or HAL, to solve this problem. APL’s Hardware Abstract Layer is a little different from other software packages, in that it is defined on as needed basis. When a new interface is created and it requires hardware access, then a set of HAL methods are created to support the needs of the new interface. Another design goal of the HAL is not to put policy functionality into the HAL. Every effort is made to design HAL methods as simply primitives and move the control logic up a layer. For example: APL contains interrupt driven, stream-based, blocking UART drivers. The driver code for the interrupt routines is platform independent. This works because of the structure of the HAL and due to that fact that UART semantics are fairly consistent across hardware vendors.
Another side-effect of APL’s HAL design is that for a given interface, not all platforms are supported. There are no requirements that platforms support all of the various HAL interfaces. HAL support is a function of the platform’s hardware as well as development time for someone to write the code.

6.4 Porting

In theory porting APL is easier than porting the XMK package. This is certainly true when creating a new implementation of the OS Abstraction Layer (no assembly required). When porting the various HAL interfaces, the developer will need to have intimate knowledge of the hardware being supported. Listed below is a high level outline of the steps required when porting the OS Abstraction Layer and/or HAL interfaces. Additional porting details cab be found in the src/apl/docs and src/aplmt/docs directories.
· Identify the platform specific requirements of the interface being ported.

· Create the platform header file that the original interface references and/or includes. Also, you will need to publish the location of this configuration header file so that the application can properly construct its build scripts.

· Provide a correct implementation (this is the hard part).
7 Appendix -- Directory Structure
The following figure provides are road map of the directory structure used for the full source code release of the XMK Operating System. If you have downloaded a compact source release, it will have a different structure. However, the top level src/ and xsource/ directory trees are the same for all types of releases.

Figure 1 - Source Code Directory Structure

[image: image4.png]‘These directorles are part of BENV. BENV is 8

irectory where multiple-hast, crass target bulld enviranment.
you installed the source Note: The XMK and APL packages ans not
code tar dependent on BENV.

These directories contain scripts
andior executables used by BENY
on various host platiorms.

;
]
$
[I [[
o | (o0] (o] | [[Curcen | []

A} build/ 1
o] R
hostiinks/ “
[rome] !

changelog, etc. o .
ight’s Open Repository.
XMK i & sub-project of the.
Open Repository.

‘Third-party packages that have
been integrated into the XMK
‘system.

Source code for

Board Support Packa
. oard Support Packages

for the examplofest

projects. The content of
this directory free 5 nota
formal part of XMK system.

Source code for the
\ muli-threaded section
of the APL package.

Sourcs code far the
basic section of the
APL package.

ExampleiTest projects for
the APL package arly.

Example/Test projects for
the XMK package only.

� Example platform is for Renesas/Hitachi’s H8/SLP microcontroller using Hitachi’s HEW compiler. The RAM usage does not include the RAM for each thread’s stack and additional 3 bytes is required for each thread created.

� Historically, this is the original XMK system before all of the bells and whistles were added.

� The acronym APL stands for: Another Platform independent Library.

� The web server is part of � HYPERLINK "http://www.dunkels.com/adam/uip" ��uIP�, a minimal TCP/IP stack for 8bit/16bit microcontrollers that has been integrated into the XMK package

� The XMK source release contains several example projects that have Board Support Package code. This startup/BSP code is not a formal part of the XMK system

� The kernel code makes extensive use the C preprocessor and macros. This approach is the result of a design trade-off, sacrificing code size for readability.

� It is the responsibility of the application to ensure that the static threads it creates, never terminate.

� This is the responsibility of the application.

� XMK can stilled be used with processors that have/use multiple priority interrupt masks as long as the application always turns all interrupts that it uses on or off. For instance, XMK supports Hitachi’s H8s microcontrollers using interrupt control mode 2 (i.e. 3 interrupt mask bits). Being able to support interrupt control mode 2 allows XMK to work with Hitachi’s HDI debug monitor.

� APL has a minimal resource requirement vs. the XMK package’s extreme minimal requirement. This is due to the more abstract nature of the APL interfaces.

� The term factory pattern comes from object oriented design patterns. Here is a link to a brief introduction to the factory pattern or factory method as it is called. � HYPERLINK "http://patterndigest.com/patterns/FactoryMethod.html" ��http://patterndigest.com/patterns/FactoryMethod.html�

