
Motivation Comparison of RMI solutions CTL4j Conclusion

The Component Template Library Protocol and
its Java Implementation

Boris Bügling

Institute for Scientific Computing, Technical University Braunschweig

30. März 2006

Motivation Comparison of RMI solutions CTL4j Conclusion

Outline

1 Motivation
Why Distributed Computing?
History

2 Comparison of RMI solutions
Available Frameworks
CTL in detail

3 CTL4j
Goals
Results
Future

4 Conclusion
Conclusion

Motivation Comparison of RMI solutions CTL4j Conclusion

Why Distributed Computing?

Why Distributed Computing?

Using the computing power of available workstations
efficiently
Sharing special hardware and software
Using many smaller machines is often cheaper
Increased reliability and availability
Services can be colocated at the provider instead of the
user

Motivation Comparison of RMI solutions CTL4j Conclusion

History

History

Basic approach
’Manual’ serialization, I/O via BSD sockets with read(2) and
write(2)

Remote Procedure Calls (RPC)
Procedural interface for services on remote machines
Location of services should be transparent
Serialization using a well-defined protocol→ platform- und
language-independent systems



Motivation Comparison of RMI solutions CTL4j Conclusion

History

History

Remote Method Invocation (RMI)
Invocation of methods of remote objects→ Object-oriented
RPC

Distributed components
Being independent of

Location
Language
Deployment
Implementation

Motivation Comparison of RMI solutions CTL4j Conclusion

Available Frameworks

How to compare the solutions

Installation→ Shipped with the framework or common
Linux distributions
Quality and ease of use of APIs
Garbage collection (GC)
Extensibility (new transports, serializers)
Security (authentication, integrity, secrecy)
Firewall and NAT support→ Supported by all solutions
Performance (detailled tables and sample code in the
paper itself)

Motivation Comparison of RMI solutions CTL4j Conclusion

Available Frameworks

CORBA

Common Object Request Broker Architecture,
standardized by the Object Management Group (OMG)
Implementation reviewed: ORBit2 by the GNOME project
Transport-Protocol IIOP, layered on top of TCP
IDL defines the component interface in a
language-independent way
API: Language independent, but CORBA-specific
No GC; not easy to extend
Security: Still under research and not provided by all
implementations

Motivation Comparison of RMI solutions CTL4j Conclusion

Available Frameworks

Java RMI

Part of the Java SDK by Sun
Well integrated into Java; uses Java interfaces→ Not
language-independent
GC: Done by the so called Distributed Garbage Collector
Extensibility: Not possible without modifying Sun’s code
No support for authentication or encryption



Motivation Comparison of RMI solutions CTL4j Conclusion

Available Frameworks

Microsoft .NET

Transport protocol: SOAP (XML) or the binary MS-specific
Remoting
Well integrated into C#, interfaces are defined implicitly by
the implementation→ Applications need to run inside the
.NET runtime
GC: Supported
Pluggable formaters and transports, example:
Remoting.CORBA
Role-based access control; encryption via HTTPS

Motivation Comparison of RMI solutions CTL4j Conclusion

Available Frameworks

SOAP

Simple Object Access Protocol, W3C recommendation
Implementation reviewed: gSOAP2
XML-based, HTTP usually used as transport protocol
API: Language- and SOAP-specific
No GC; not easy to extend
Supports HTTPS and HTTP-Auth

Motivation Comparison of RMI solutions CTL4j Conclusion

Available Frameworks

CTL

API: Applications and components can be developed
without knowledge about the CTL itself, well integrated into
the supported languages
GC: Automatic (reference counting at rPointer-level)
Extensibility: User-defined communicators can provide
new transports, no support for new serializers
Security: Provided by the pipe transport (using SSH)

Motivation Comparison of RMI solutions CTL4j Conclusion

Available Frameworks

Performance



Motivation Comparison of RMI solutions CTL4j Conclusion

CTL in detail

Basic structure of communication

Motivation Comparison of RMI solutions CTL4j Conclusion

CTL in detail

Breaking down complex types

Fundamentals: integer types, floating point types, void
Composites

Arrays (serialized as: size, e0, e1, ...)
String (serialized as: e0, e1, ...,
0)
Tuple (fixed size; serialized as: e0, e1, ...)
Reference (serialized as: typeID, true, data or typeID, false)

All other types can be serialized as an aggregate of these
types
User-defined components do not have to deal with the
binary data directly
Protocol implementations just need to understand the
binary stream→ language independence

Motivation Comparison of RMI solutions CTL4j Conclusion

CTL in detail

Separation of communication path and application

Layers of the CTL protocol

Motivation Comparison of RMI solutions CTL4j Conclusion

CTL in detail

Separation of interface and implementation

Example:
#define CTL_Class AddCI
#include CTL_ClassBegin
#define CTL_Method1 int4, add (const int4, const int4), 2
#include CTL_ClassEnd
→ The implementation just needs to export this interface;
multiple (different) solutions possible



Motivation Comparison of RMI solutions CTL4j Conclusion

CTL in detail

Location independence

CTL.Location
name - Component’s name
host - Hostname
path - Filesystem location
exec - Executable name
link - Transport protocol

CTL allows resource managers at user-level (using the
CTL_Locator interface)
Mapping: Component’s name→ location
Future: User can specify additional requirements
(Component Query Language, CQL)

Motivation Comparison of RMI solutions CTL4j Conclusion

Goals

Goals

Development of applications and components in Java

possible

Documentation of the protocol

Help to improve the CTL/C++

Motivation Comparison of RMI solutions CTL4j Conclusion

Results

Source code comparison of CTL4j and Java RMI

Java RMI

import java.rmi.Naming;
import java.rmi.RemoteException;

public class HelloClient
{
public static void main (String[] args)
{
try
{
Hello obj = (Hello)Naming.
lookup("//localhost/HelloServer");
String message = obj.sayHello();
System.out.println("RMI msg: "+message);
}
catch (Exception e)
{
System.out.println("HelloClient exception: " + e.getMessage());
e.printStackTrace();
}
}
}

CTL4j

import javaSys.HelloCI;

public class HelloClient
{
public static void main (String args[])
{
HelloCI obj = HelloCI.create();
System.out.println(obj.sayHello());
}
}

Motivation Comparison of RMI solutions CTL4j Conclusion

Results

Java implementation

No preprocessor→ code-generator required
The Reflection API provides introspection of classes,
therefore no Java parser was needed
Heavy use of Java 1.5 features (Generics, Annotations)
Generics are used to emulate the template syntax of the
CTL/C++

Template parameters are deleted from the actual compiled
class (Erasure)→ information is kept in a separate data
structure, the TypeTree
For interfaces, the template parameters need to be present,
but cannot be queried properly using Reflection→ The
ByteCode Engineering Library (BCEL) was used to parse
the bytecode and provide this information
Both problems are handled transparently by the ReflWrap
package



Motivation Comparison of RMI solutions CTL4j Conclusion

Results

Java implementation

Annotations were used to implement missing syntax
features (const modifier, static function IDs)
Interoperability with the CTL/C++ interfaces is achieved by
ctlcc.py, a Python script which generates a Java dummy
implementation class, which can be fed to the
code-generator as usual

Motivation Comparison of RMI solutions CTL4j Conclusion

Future

Future

CTL.Process → CTL.Link
New transports

local calls (implemented in the newest snapshot)
Threads
Pipe→ Security provided by SSH
C++ using the Java Native Interface (JNI)

HTTP as transport protocol (maybe XML serialization)→
Webservices
Optimization (’First make it work, then make it
fast.’)

Motivation Comparison of RMI solutions CTL4j Conclusion

Conclusion

Reasons for using the CTL

Performance: low latency and good scalability
Uniform behaviour across different transport protocols and
local linkage
Easy to understand protocol (compared to the 1000 pages
of the CORBA core specification, for example)
Portability: C, C++, Fortran, Java and Python are
supported languages
Almost no learning curve for implementing components
and applications

Motivation Comparison of RMI solutions CTL4j Conclusion

Conclusion

Discussion

Any comments or questions?


