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1 Introduction

Trigonometry is an area of mathematics taught to every high-school student. The
student who goes on to study more advanced mathematics is faced with problems as
the intuitive definitions of concepts such as angle, sine and cosine are often inadequate
in producing rigorous proofs in calculus. For instance, the usual proof found in
calculus textbooks of the limit

lim
x→0

sin x

x
= 1

can be shown to be circular upon detailed examination. This identity is at the
foundation of essentially all calculus involving trigonometric functions and so this is
a very unsatisfactory state of affairs. Rigor is the hallmark of modern mathematics
and we should settle for nothing less for statements as fundamental as the above.

Fortunately there are ways of achieving the highest level of rigor. In this article
most of the details pertaining to one such approach are worked out. All the arguments
are simple if somewhat clever at times. Nothing more than elementary calculus is
used, with only a single exception. Rather than starting with geometric definitions,
we start with definitions based on differential calculus and proceed to show that all the
familiar properties hold true. Finally, we make direct connection with the geometry
by linking our definitions with the unit circle and then angles.

2 Definition

Consider the pair of coupled first-order differential equations

C ′(t) = −S(t)

S ′(t) = C(t)

with initial conditions C(0) = 1 and S(0) = 0. For a brief moment we will assume that
these equations have solutions C and S and derive some elementary consequences of
the definitions. We will then prove their existence by constructing explicit solutions
using power series.

3 The Theorem of Pythagoras

Consider the function C(t)2 + S(t)2. Its derivative is 2C(t)C ′(t) + 2S(t)S ′(t) which,
by applying the definitions of C and S, reduces to 0. A function with vanishing
derivative is constant. This implies C(t)2 + S(t)2 = C(0)2 + S(0) and thus

C(t)2 + S(t)2 = 1

An immediate corollary of this identity is that we have the bounds C(t)2 ≤ 1 and
S(t)2 ≤ 1 and hence

|C(t)| ≤ 1,

|S(t)| ≤ 1.
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4 Construction by Power Series

If we differentiate C repeatedly, we find that C ′(t) = −S(t), C ′′(t) = −C(t), C ′′′(t) =
S(t) and C ′′′′(t) = C(t). We are back with C where we started. This pattern re-
peats itself indefinitely and we therefore have C(4n+0)(t) = C(t), C(4n+1)(t) = −S(t),
C(4n+2)(t) = −C(t) and C(4n+3)(t) = S(t) where n is any nonnegative integer.

Next we will perform a Maclaurin expansion of C. To accomplish this we need
the values of the derivatives evaluated at 0. These are C(4n+0)(0) = 1, C(4n+1)(0) = 0,
C(4n+2)(0) = −1 and C(4n+3)(0) = 0. The Maclaurin expansion of C is thus

1− t2

2!
+

t4

4!
+ · · ·

with the Lagrange remainder

Rn =
sn C(n)(s)

n!
for some s in the (0, t) interval. To show that the Maclaurin series is convergent, we
have to demonstrate that Rn → 0 as n →∞. The derivative C(n)(s) must be ±C(s)
or ±S(s). Thus

∣∣C(n)(s)
∣∣ ≤ 1 by the bounds on C and S we derived earlier. We

therefore have

|Rn| ≤
|s|n

n!
.

Since half the factors of n! are greater than or equal to n/2, we have the estimate
n! ≥ (n/2)n/2 and so we get

|s|n

n!
≤ (s2)n/2

(n/2)n/2
=

(
s2

n/2

)n/2

.

Fixing s, we have n/2 > s2 for all n ≥ N where N = 2s2 + 1. Letting r = s2

N/2
we

therefore have (
s2

n/2

)n/2

≤ rn/2

where r < 1. We have rn/2 → 0 as n → 0 and since |Rn| ≤ rn/2 it follows that
|Rn| → 0 as well. A similar analysis shows that the Maclaurin series for S,

−t +
t3

3!
− t5

5!
+ · · · ,

converges to S everywhere.
We have thus constructed power series solutions to the pair of differential equa-

tions. In fact, it can be shown that these solutions are the only ones. This is a special
case of a general uniqueness result for first-order differential equations.

5 Even and Odd

A simple but very important consequence of the construction of solutions by power
series is that we can easily see that C is even, C(−t) = C(t), and that S is odd,
S(−t) = −S(t).
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6 Addition Formulas

Define the function f by

f(s) = C(sx)C(x + y − sx)− S(sx)S(x + y − sx)

where x and y are real numbers. We have

f(0) = C(0)C(x + y)− S(0)S(x + y) = C(x + y)

and
f(1) = C(x)C(y)− S(x)S(y).

We now differentiate f with respect to s. The first term differentiates to

−xS(sx)C(x + y − sx) + xC(sx)S(x + y − sx).

Proceeding to the second term, we find that its derivative is

−xC(sx)S(x + y − sx) + xS(sx)C(x + y − sx).

These two terms cancel each other out. As a consequence f has a vanishing derivative
and is therefore constant. In particular, we have f(0) = f(1) and therefore

C(x + y) = C(x)C(y)− S(x)S(y).

It can be shown by analogous methods that

S(x + y) = C(x)S(y) + C(y)S(x)

by using the function

g(s) = C(sx)S(x + y − sx) + C(x + y − sx)S(sx)

in place of f .

7 Existence of Zeros and Definition of π
2

Suppose for the sake of contradiction that C were to have no positive zeros. Since
|C(t)| ≤ 1, it follows from the hypothesis that 0 < C(t) ≤ 1 for t > 0. Suppose that L
is the greatest lower bound on C for positive values of t. We then have 0 < L ≤ C(t)
for all t > 0. Since S ′(t) = C(t), we have

S(t) =

∫ t

0

C(t′) dt′.

Using C(t) ≥ L for t > 0, we get the estimate

S(t) ≥
∫ t

0

L dt′ = tL.

Note that tL > 1 for t > 1/L. By the above estimate, we thus have S(t) > 1 for
t > 1/L. But this contradicts the bound |S(t)| ≤ 1. The initial hypothesis must
therefore have been incorrect and we may conclude that C indeed has a positive zero.
The evenness of C implies that C also has a negative zero.

Now we can define π
2

to be the smallest positive zero of C. We have just demon-
strated that C has a positive zero so this definition is in fact meaningful.
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8 Function Values at Multiples of π
2

The purpose of this section is to calculate the values of C and S at integerm multiples
of π

2
. Firstly, since C(π

2
)2 + S(π

2
)2 = 1 we have S(π

2
)2 = 1 because π

2
is a zero of C.

Thus S(π
2
) is either −1 or 1.

Since C(0) = 1 and π
2

is the smallest positive zero of C, it follows that C is
strictly positive on the

(
0, π

2

)
interval. Hence S is strictly increasing on

(
0, π

2

)
since

S ′(t) = C(t). We have S(0) = 0 and thus S must be positive on
(
0, π

2

)
. Therefore

S(π
2
) = 1.
We can calculate the values of C and S at π and 2π using the addition formulas. At

π, we have C(π) = C(π
2
+ π

2
) = C(π

2
)C(π

2
)−S(π

2
)S(π

2
) = 1 and since C(π)2+S(π)2 = 1

we have S(π)2 = 1− C(π)2 = 0. Hence S(π) = 0.
Calculating the values of the two functions at 2π, we find that C(2π) = C(π+π) =

C(π)C(π)− S(π)S(π) = 1 and S(2π) = S(π + π) = 2C(π)C(π) = 0.

9 Periodicity

Using the addition formulas and the values of C and S we calculated in the previous
section, we get

C(t + 2π) = C(t)C(2π)− S(t)S(2π) = C(t)

and

S(t + 2π) = C(t)S(2π) + C(2π)S(t) = S(t).

We thus see that C and S are periodic with period 2π.

10 Co-relations

We next derive an important pair of relations between C and S. By the addition
formula,

C

(
t− π

2

)
= C(t)C

(
− π

2

)
− S(t)S

(
− π

2

)
= S(t)S

(
π

2

)
= S(t).

Adding π
2

to t, we arrive at the dual identity

S

(
t +

π

2

)
= C(t).
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11 Relationship to the Unit Circle

Define the mapping

T : R → R2

t 7→ (C(t), S(t))

from the real number line to the plane. It is clearly continuous since C and S are
differentiable. The identity C(t)2 + S(t)2 = 1 implies that the image of T is a subset
of the unit circle.

Consider the behavior of T on the interval
[
0, π

2

]
. Earlier we noted that S is

increasing on (0, π
2
) and therefore injective on that interval. At 0, the mapping takes

on the value (0, 1) and at π
2

its value is (0, 1). Thus the image of T on
[
0, π

2

]
is a

subset of the first quarter of the unit circle.
Since

[
0, π

2

]
is connected and T is continuous, it follows that its image is likewise

connected. The only connected subset of the first quarter unit circle that contains
(1, 0) and (0, 1) is the entire first quarter of the unit circle. Hence S must be a
homeomorphism of

[
0, π

2

]
onto the first quarter unit circle.

Similar reasoning shows that T maps
[

π
2
, π

]
homeomorphically onto the second

quarter unit circle, [π, 3π/2] homeomorphically onto the third quarter unit circle and
[3π/4, 2π] homeomorphically onto the fourth quarter unit circle. Thus T is seen to
be a homeomorphism of

[
0, π

2

)
onto the unit circle with the point (1, 0) removed.

12 Defining Angles

Given a point P on the unit circle, we define its angle θ(P ) to be the inverse of T
when restricted to

[
0, π

2

)
. This inverse exists due to the surjectivity of T and its

injectivity when restricted to this interval, as was established in the previous section.
Since T restricted to

[
0, π

2

)
is a homeomorphism it has a continuous inverse and thus

θ is continuous. We can define the angle between two points on the unit circle by the
difference of their angles modulo π.
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