Representing Rotations by Quaternions
Per Vognsen

In this article, we will assume the following reflections decomposition theorem to
be true. A proof and discussion of this important theorem can be found in another

article.

Theorem 1. If A isin SO(n) then there are Ay, ..., Ay in O(n) such that
A = A ---A,. In other words, any rotation of n-dimensional space can be

written as a composition of at most n reflections.

We will be using the identification between vectors # = (z1,z2, x3) of R® and

pure unit quaternions with the corresponding components, x1i + z9j + x3k.

Lemma 2. If q; and qg are pure imaginary unit quaternion then qiqs =

dq1 X g2 — q1 - 92.

This lemma is easily seen to be true by a routine calculation. There is an

immediate corollary that follows by noting that q x q =0 and q-q = \q|2 = 1.

Corollary 3. Ifq is a pure imaginary unit quaternion then q> = —1.

We can now prove an important lemma on the relationship between quaternions

and reflections.

Lemma 4. If @ is a unit vector in R® then the mapping @i — AR is a

reflection in the plane through the origin with normal vector n.

Proof. The mapping is linear due to the properties of quaternion multiplication.

Since any vector can be decomposed in parts parallel and orthogonal to the plane
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orthogonal to 7, we can reduce the problem to considering just two different cases.
The first case is when the vector 7 is parallel to n. In this case we have ¥ = si for
some s in R. Thus we have 27 = siii> = —sii = —x. So & is reflected in the plane.
The other case occurs when ¥ is orthogonal to 7. We have ¥1i = ¥ x 77 by Lemma 2
since @ - 7 = 0 by orthogonality. Thus & and 7 anti-commute, that is, 7 = —nZ. It

2

follows that 7iznm = —n“Z = T, so we see that the mapping fixes Z.

We next combine the reflections decomposition theorem with the previous lem-

ma.

Lemma 5. Let m and ni be unit normal vectors whose corresponding planes
intersect in an axis with unit direction vector @ and at an angle 6/2. The

mapping T — (7im)* & (im) is then a rotation around the axis @ by 6.

Proof. First we note that (nm)* = m*n* = (—m)(—n) = mn. Using the as-

sociativity of quaternion multiplication, we thus have (Am) @ (rim) = ni (7 2 7) m.
So by Lemma 4 we see that the mapping is a reflection in the plane orthogonal
to 71, followed by a reflection in the plane orthogonal to m. By the case n = 3 of

Theorem 1, this is a rotation around @ by the angle 6.

We now have all the lemmas we need to prove the main theorem of this article.

Theorem 6. Ifq = cos(f/2)+ usin(6/2) then the mapping ¥ — q*Z q is a

rotation around the axis @ by the angle 6.

Proof. Let 7 be any unit normal vector orthogonal to @. We can construct
an orthonormal basis of R® consisting of @, @ and @ x @ = 7d. Let m be the
result of rotating 7 by an angle /2 around the axis #. By simple trigonometry,
m = ficos(0/2) + nitsin(0/2) = ri(cos(0/2) + wsin(6/2)). Multiplying both sides on
the right by 77, we get
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i = 1i (cos(0/2) + usin(0/2)) 7l
= —7i*(cos(6/2) + isin(6/2))
= cos(6/2) + usin(6/2)

S

where the second equality is due to the orthogonality of @ and @ and the third
equality comes from Corollary 3. The theorem now follows from Lemma 5 if we

choose q = mn.



