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In this article, we will assume the following reflections decomposition theorem to

be true. A proof and discussion of this important theorem can be found in another

article.

Theorem 1. If A is in SO(n) then there are A1, . . . ,An in O(n) such that

A = A1 · · ·An. In other words, any rotation of n-dimensional space can be

written as a composition of at most n reflections.

We will be using the identification between vectors ~x = (x1, x2, x3) of R3 and

pure unit quaternions with the corresponding components, x1i + x2j + x3k.

Lemma 2. If q1 and q2 are pure imaginary unit quaternion then q1q2 =

q1 × q2 − q1 · q2.

This lemma is easily seen to be true by a routine calculation. There is an

immediate corollary that follows by noting that q× q = 0 and q · q = |q|2 = 1.

Corollary 3. If q is a pure imaginary unit quaternion then q2 = −1.

We can now prove an important lemma on the relationship between quaternions

and reflections.

Lemma 4. If ~n is a unit vector in R3 then the mapping ~n 7→ ~n~x~n is a

reflection in the plane through the origin with normal vector ~n.

Proof. The mapping is linear due to the properties of quaternion multiplication.

Since any vector can be decomposed in parts parallel and orthogonal to the plane
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orthogonal to ~n, we can reduce the problem to considering just two different cases.

The first case is when the vector ~x is parallel to ~n. In this case we have ~x = s~n for

some s in R. Thus we have ~n~x~n = s~n~n2 = −s~n = −x. So ~x is reflected in the plane.

The other case occurs when ~x is orthogonal to ~n. We have ~x~n = ~x× ~n by Lemma 2

since ~x ·~n = 0 by orthogonality. Thus ~x and ~n anti-commute, that is, ~x~n = −~n~x. It

follows that ~n~x~n = −~n2~x = ~x, so we see that the mapping fixes ~x.

We next combine the reflections decomposition theorem with the previous lem-

ma.

Lemma 5. Let ~m and ~n be unit normal vectors whose corresponding planes

intersect in an axis with unit direction vector ~u and at an angle θ/2. The

mapping ~x 7→ (~n~m)∗ ~x (~n~m) is then a rotation around the axis ~u by θ.

Proof. First we note that (~n~m)∗ = ~m∗~n∗ = (−~m)(−~n) = mn. Using the as-

sociativity of quaternion multiplication, we thus have (~n~m) ~x (~n~m) = ~m (~n~x~n) ~m.

So by Lemma 4 we see that the mapping is a reflection in the plane orthogonal

to ~n, followed by a reflection in the plane orthogonal to ~m. By the case n = 3 of

Theorem 1, this is a rotation around ~u by the angle θ.

We now have all the lemmas we need to prove the main theorem of this article.

Theorem 6. If q = cos(θ/2) + ~u sin(θ/2) then the mapping ~x 7→ q∗ ~x q is a

rotation around the axis ~u by the angle θ.

Proof. Let ~n be any unit normal vector orthogonal to ~u. We can construct

an orthonormal basis of R3 consisting of ~n, ~u and ~n × ~u = ~n~u. Let ~m be the

result of rotating ~n by an angle θ/2 around the axis ~u. By simple trigonometry,

~m = ~n cos(θ/2) + ~n~u sin(θ/2) = ~n(cos(θ/2) + ~u sin(θ/2)). Multiplying both sides on

the right by ~n, we get
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~m~n = ~n (cos(θ/2) + ~u sin(θ/2))~n

= −~n2(cos(θ/2) + ~u sin(θ/2))

= cos(θ/2) + ~u sin(θ/2)

where the second equality is due to the orthogonality of ~u and ~n and the third

equality comes from Corollary 3. The theorem now follows from Lemma 5 if we

choose q = ~m~n.


