Representing Rotations by Quaternions Per Vognsen

In this article, we will assume the following reflections decomposition theorem to be true. A proof and discussion of this important theorem can be found in another article.

Theorem 1. If **A** is in **SO**(*n*) then there are A_1, \ldots, A_n in **O**(*n*) such that $A = A_1 \cdots A_n$. In other words, any rotation of *n*-dimensional space can be written as a composition of at most *n* reflections.

We will be using the identification between vectors $\vec{x} = (x_1, x_2, x_3)$ of \mathbb{R}^3 and pure unit quaternions with the corresponding components, $x_1\mathbf{i} + x_2\mathbf{j} + x_3\mathbf{k}$.

Lemma 2. If \mathbf{q}_1 and \mathbf{q}_2 are pure imaginary unit quaternion then $\mathbf{q}_1\mathbf{q}_2 = \mathbf{q}_1 \times \mathbf{q}_2 - \mathbf{q}_1 \cdot \mathbf{q}_2$.

This lemma is easily seen to be true by a routine calculation. There is an immediate corollary that follows by noting that $\mathbf{q} \times \mathbf{q} = 0$ and $\mathbf{q} \cdot \mathbf{q} = |\mathbf{q}|^2 = 1$.

Corollary 3. If **q** is a pure imaginary unit quaternion then $\mathbf{q}^2 = -1$.

We can now prove an important lemma on the relationship between quaternions and reflections.

Lemma 4. If \vec{n} is a unit vector in \mathbb{R}^3 then the mapping $\vec{n} \mapsto \vec{n}\vec{x}\vec{n}$ is a reflection in the plane through the origin with normal vector \vec{n} .

Proof. The mapping is linear due to the properties of quaternion multiplication. Since any vector can be decomposed in parts parallel and orthogonal to the plane

Per Vognsen

orthogonal to \vec{n} , we can reduce the problem to considering just two different cases. The first case is when the vector \vec{x} is parallel to \vec{n} . In this case we have $\vec{x} = s\vec{n}$ for some s in \mathbb{R} . Thus we have $\vec{n}\vec{x}\vec{n} = s\vec{n}\vec{n}^2 = -s\vec{n} = -x$. So \vec{x} is reflected in the plane. The other case occurs when \vec{x} is orthogonal to \vec{n} . We have $\vec{x}\vec{n} = \vec{x} \times \vec{n}$ by Lemma 2 since $\vec{x} \cdot \vec{n} = 0$ by orthogonality. Thus \vec{x} and \vec{n} anti-commute, that is, $\vec{x}\vec{n} = -\vec{n}\vec{x}$. It follows that $\vec{n}\vec{x}\vec{n} = -\vec{n}^2\vec{x} = \vec{x}$, so we see that the mapping fixes \vec{x} .

We next combine the reflections decomposition theorem with the previous lemma.

Lemma 5. Let \vec{m} and \vec{n} be unit normal vectors whose corresponding planes intersect in an axis with unit direction vector \vec{u} and at an angle $\theta/2$. The mapping $\vec{x} \mapsto (\vec{n}\vec{m})^* \vec{x} \ (\vec{n}\vec{m})$ is then a rotation around the axis \vec{u} by θ .

Proof. First we note that $(\vec{n}\vec{m})^* = \vec{m}^*\vec{n}^* = (-\vec{m})(-\vec{n}) = mn$. Using the associativity of quaternion multiplication, we thus have $(\vec{n}\vec{m}) \vec{x} (\vec{n}\vec{m}) = \vec{m} (\vec{n} \vec{x} \vec{n}) \vec{m}$. So by Lemma 4 we see that the mapping is a reflection in the plane orthogonal to \vec{n} , followed by a reflection in the plane orthogonal to \vec{m} . By the case n = 3 of Theorem 1, this is a rotation around \vec{u} by the angle θ .

We now have all the lemmas we need to prove the main theorem of this article.

Theorem 6. If $\mathbf{q} = \cos(\theta/2) + \vec{u}\sin(\theta/2)$ then the mapping $\vec{x} \mapsto \mathbf{q}^* \vec{x} \mathbf{q}$ is a rotation around the axis \vec{u} by the angle θ .

Proof. Let \vec{n} be any unit normal vector orthogonal to \vec{u} . We can construct an orthonormal basis of \mathbb{R}^3 consisting of \vec{n} , \vec{u} and $\vec{n} \times \vec{u} = \vec{n}\vec{u}$. Let \vec{m} be the result of rotating \vec{n} by an angle $\theta/2$ around the axis \vec{u} . By simple trigonometry, $\vec{m} = \vec{n}\cos(\theta/2) + \vec{n}\vec{u}\sin(\theta/2) = \vec{n}(\cos(\theta/2) + \vec{u}\sin(\theta/2))$. Multiplying both sides on the right by \vec{n} , we get

$$\vec{m}\vec{n} = \vec{n}\left(\cos(\theta/2) + \vec{u}\sin(\theta/2)\right)\vec{n}$$
$$= -\vec{n}^2\left(\cos(\theta/2) + \vec{u}\sin(\theta/2)\right)$$
$$= \cos(\theta/2) + \vec{u}\sin(\theta/2)$$

where the second equality is due to the orthogonality of \vec{u} and \vec{n} and the third equality comes from Corollary 3. The theorem now follows from Lemma 5 if we choose $\mathbf{q} = \vec{m}\vec{n}$.